Title : Design of Lipid-Based Nanocarriers via Cation Modulation of Ethanol-Interdigitated Lipid Membranes

Authors : Valeria Nele, Margaret N. Holme, M. Harunur Rashid, Hanna M. G. Barriga, Tu C. Le, Michael R. Thomas, James J. Doutch, Irene Yarovsky, and Molly M. Stevens

Abstract : Short-chain alcohols (i.e., ethanol) can induce membrane interdigitation in saturated-chain phosphatidylcholines (PCs). In this process, alcohol molecules intercalate between phosphate heads, increasing lateral separation and favoring hydrophobic interactions between opposing acyl chains, which interpenetrate forming an interdigitated phase. Unraveling mechanisms underlying the interactions between ethanol and model lipid membranes has implications for cell biology, biochemistry, and for the formulation of lipid-based nanocarriers. However, investigations of ethanol–lipid membrane systems have been carried out in deionized water, which limits their applicability. Here, using a combination of small- and wide-angle X-ray scattering, small-angle neutron scattering, and all-atom molecular dynamics simulations, we analyzed the effect of varying CaCl2 and NaCl concentrations on ethanol-induced interdigitation. We observed that while ethanol addition leads to the interdigitation of bulk phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers in the presence of CaCl2 and NaCl regardless of the salt concentration, the ethanol-induced interdigitation of vesicular DPPC depends on the choice of cation and its concentration. These findings unravel a key role for cations in the ethanol-induced interdigitation of lipid membranes in either bulk phase or vesicular form.

Journal : Langmuir Volume : 37 Year : 2021 Issue : 40
Pages : 11909–11921 City : Edition : Editors :
Publisher : ISBN : Book : Chapter :
Proceeding Title : Institution : Issuer : Number :