Title : Liposomal drug delivery of Corchorus olitorius leaf extract containing phytol using design of experiment (DoE): In-vitro anticancer and in-vivo anti-inflammatory studies

Authors : Mohammad Hossain Shariare , Humaira Binte Noor, Junayet Hossain Khan, Jamal Uddin, Syed Rizwan Ahamad, Mohammad A. Altamimi, Fars K. Alanazi, Mohsin Kazi

Abstract : Phytol, a pharmacologically active compound present in Corchorus olitorius leaf exhibit a range of activity including anti-inflammatory, antioxidant, anticancer, hepatoprotective etc. However, phytol is poorly soluble and absorbed through the intestine wall, therefore the aim of this study is to develop liposomal drug delivery of Corchorus olitorius leaf extract with an average particle size below 150 nm and drug loading efficiency of ? 85 %. The impact of different process parameters and material attributes were studied on the average particle size and polydispersity of liposomal batches using design of experiment (DoE). Corchorus olitorius leaf extraction was performed using maceration method and characterised using GC–MS. Liposomal batches of Corchorus olitorius leaf extract were characterized using Malvern zetasizer, transmission electron microscopy (TEM) and UV spectroscopy. The in-vivo anti-inflammatory study of the liposomal preparation of phytol was evaluated using a rat model and in-vitro cancer cell line study was performed on AML and Leukamia cell lines. GC–MS study data showed that phytol is present in C. olitorius leaf extract. Process parameters and material attributes perspective processing temperature, buffer pH and drug: lipid ratio is found as major parameters affecting the average particle size and PDI value of liposomes. Liposomes were prepared in the range of 80–250 nm and optimized batches of liposomes showed drug entrapment efficiency of 60–88 %. In-vivo anti-inflammatory study showed significant activity for C. olitorius leaf extract against carrageenan induced paw edema, which is significantly increased while delivered through liposomes. In-vitro cancer cell line study data suggests that liposomal delivery of phytol was more active at lower concentration compared to pure phytol, for specific cell lines.

Journal : Colloids and Surfaces B: Biointerfaces Volume : 199 Year : 2021 Issue :
Pages : City : Edition : Editors :
Publisher : ISBN : Book : Chapter :
Proceeding Title : Institution : Issuer : Number :